Synlett, Table of Contents Synlett 2017; 28(18): 2478-2482DOI: 10.1055/s-0036-1588451 cluster © Georg Thieme Verlag Stuttgart · New YorkReactivity of Seven-Membered-Ring trans-Alkenes with Electrophiles Jillian R. Sanzone Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA Email: kwoerpel@nyu.edu , K. A. Woerpel * Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA Email: kwoerpel@nyu.edu› Author AffiliationsRecommend Article Abstract Buy Article All articles of this category Published as part of the Cluster Silicon in Synthesis and Catalysis Abstract Seven-membered-ring trans-alkenes containing a silicon–oxygen bond reacted rapidly with oxygen gas and electron-deficient alkenes and alkynes to give products with high selectivity. Addition of an electron-donating substituent or incorporating additional strain increased the reactivity by over two orders of magnitude. These results indicate that release of strain is not the only driving force for reactivity. Key words Key wordsalkenes - conjugate addition - cycloheptene - strained molecules - silicon Full Text References References and Notes 1 Corey EJ. Carey FA. Winter RA. E. J. Am. Chem. Soc. 1965; 87: 934 2 Ziegler K. Wilms H. Justus Liebigs Ann. Chem. 1950; 567: 1 3 Inoue Y. Ueoka T. Kuroda T. Hakushi T. J. Chem. Soc., Perkin Trans. 2 1983; 983 4 Greene MA. Prévost M. Tolopilo J. Woerpel KA. J. Am. Chem. Soc. 2012; 134: 12482 5 Hurlocker B. Hu C. Woerpel KA. Angew. Chem. Int. Ed. 2015; 54: 4295 6 Hoffmann R. Inoue Y. J. Am. Chem. Soc. 1999; 121: 10702 7 Shea KJ. Kim J.-S. J. Am. Chem. Soc. 1992; 114: 3044 8 Inoue Y. Turro NJ. Tetrahedron Lett. 1980; 21: 4327 9 Squillacote M. Mooney M. De Felippis J. J. Am. Chem. Soc. 1990; 112: 5364 10 Poon TH. W. Park SH. Elemes Y. Foote CS. J. Am. Chem. Soc. 1995; 117: 10468 11 Corey EJ. Tada M. LaMahieu R. Libit L. J. Am. Chem. Soc. 1965; 87: 2051 12 Thalhammer F. Wallfahrer U. Sauer J. Tetrahedron Lett. 1990; 31: 6851 13 Steinmetz MG. Sguin KJ. Udayakumar BS. Behnke JS. J. Am. Chem. Soc. 1990; 112: 6601 14 Shea KJ. Kim J.-S. J. Am. Chem. Soc. 1992; 114: 4846 15 Krebs A. Pforr K.-I. Raffay W. Thölke B. König WA. Hardt I. Boese R. Angew. Chem., Int. Ed. Engl. 1997; 36: 159 16 Adam W. Weinkötz S. J. Am. Chem. Soc. 1998; 120: 4861 17 Blackman ML. Royzen M. Fox JM. J. Am. Chem. Soc. 2008; 130: 13518 18 Taylor MT. Blackman ML. Dmitrenko O. Fox JM. J. Am. Chem. Soc. 2011; 133: 9646 19 Tomooka K. Miyasaka S. Motomura S. Igawa K. Chem. Eur. J. 2014; 20: 7598 20 Sanzone JR. Woerpel KA. Angew. Chem. Int. Ed. 2016; 55: 790 21 Santucci JIII. Sanzone JR. Woerpel KA. Eur. J. Org. Chem. 2016; 2933 22 Wilson MR. Taylor RE. Angew. Chem. Int. Ed. 2013; 52: 4078 23 Debets MF. van Berkel SS. Dommerholt J. Dirks AJ. Rutjes FP. J. T. van Delft FL. Acc. Chem. Res. 2011; 44: 805 24 Hart H. Dunkelblum E. J. Am. Chem. Soc. 1978; 100: 5141 25 Moran J. Dornan P. Beauchemin AM. Org. Lett. 2007; 9: 3893 26 Moran J. Cebrowski PH. Beauchemin AM. J. Org. Chem. 2008; 73: 1004 27 Ketone 4 To a solution of diene 1 (0.013 g, 0.08 mmol) and cyclohexene silacyclopropane 2 (0.028 g, 0.13 mmol) in C6H6 (0.48 mL) was added AgOCOCF3 (0.025 mL, 0.030 M in C6H6). After 10 min, benzaldehyde (0.0080 mL, 0.080 mmol) was added, and the reaction vessel was removed from the glovebox and placed under an O2 atmosphere (balloon). After 4 h, the reaction mixture was concentrated in vacuo. Purification by flash chromatography (EtOAc–hexanes = 2:98) afforded ketone 4 as a white solid (0.025 g, 59% over three steps): mp 94–95 °C. 1H NMR (600 MHz, CDCl3): δ = 7.36–7.27 (m, 5 H), 4.97 (d, J = 9.7 Hz, 1 H), 4.72 (dd, J = 10.0, 4.9 Hz, 1 H), 2.86 (dq, J = 9.7, 7.0 Hz, 1 H), 1.21 (dd, J = 14.5, 4.9 Hz, 1 H), 1.12–1.10 (m, 1 H), 1.05 (s, 9 H), 0.93 (s, 9 H), 0.77 (d, J = 7.0 Hz, 3 H), 0.16 (s, 9 H). 13C NMR (125 MHz, CDCl3): δ = 215.1 (C), 142.6 (C), 128.4 (CH), 127.9 (CH), 126.8 (CH), 78.7 (CH), 77.6 (CH), 56.3 (CH), 28.0 (CH3), 27.6 (CH3), 21.7 (C), 20.8 (C), 16.6 (CH2), 14.4 (CH3), 0.1 (CH3). IR (ATR): 1708, 1071, 838 cm–1. ESI-HRMS: m/z calcd for C23H40NaO3Si2 [M + Na]+: 443.2408; found: 443.2410. Anal. Calcd for C23H40O3Si2: C, 65.66; H, 9.58. Found: C, 65.94; 9.33. 28 Warmuth R. Marvel MA. Chem. Eur. J. 2001; 7: 1209 29 Rubottom GM. Vazquez MA. Pelegrina DR. Tetrahedron Lett. 1974; 15: 4319 30 Bartlett PD. Banavali R. J. Org. Chem. 1991; 56: 6043 31 Clark KB. Howard JA. Oyler AR. J. Am. Chem. Soc. 1997; 119: 9560 32 Lambert JB. Tetrahedron 1990; 46: 2677 33 In certain systems, the γ-silyl carbocation is favored over the β-silyl carbocation: Coope J. Shiner VJ. Jr. Ensinger MW. J. Am. Chem. Soc. 1990; 112: 2834 34 The electronic nature of the double bond is important in [4+2] cycloadditions between cyclooctynes and azides. Fluorine-substituted cyclooctynes can react up to 63 times faster than related cyclooctynes: Baskin JM. Prescher JA. Laughlin ST. Agard NJ. Chang NJ. Miller IA. Lo A. Codelli JA. Bertozzi CR. Proc. Natl. Acad. Sci., U.S.A. 2007; 104: 16793 35 Computational studies comparing the strain energy of a trans-oxasilacycloheptene with a cis-oxasilacycloheptene showed that the energy difference was ca. 20 kcal/mol, indicating strain energy does influence reactivity. Details are provided as Supporting Information. 36 Mayr H. Kempf B. Ofial AR. Acc. Chem. Res. 2003; 36: 66 37 Hoffmann R. Woodward RB. J. Am. Chem. Soc. 1965; 87: 2046 38 Sella A. Basch H. Hoz S. J. Am. Chem. Soc. 1996; 118: 416 39 The reactivity of trans-alkenes with quinones also correlates with the reduction potential of the electrophile: Guo X. Mayr H. J. Am. Chem. Soc. 2014; 136: 11499 40 Marshall JA. Acc. Chem. Res. 1980; 13: 213 41 Allgäuer DS. Mayr H. Eur. J. Org. Chem. 2014; 2956 Supplementary Material Supplementary Material Supporting Information